A pigeonpea gene confers resistance to Asian soybean rust in soybean
نویسندگان
چکیده
منابع مشابه
Identification of a second Asian soybean rust resistance gene in Hyuuga soybean.
ABSTRACT Asian soybean rust (ASR) is an economically significant disease caused by the fungus Phakopsora pachyrhizi. The soybean genes Rpp3 and Rpp?(Hyuuga) confer resistance to specific isolates of the pathogen. Both genes map to chromosome 6 (Gm06) (linkage group [LG] C2). We recently identified 12 additional soybean accessions that harbor ASR resistance mapping to Gm06, within 5 centimorgans...
متن کاملFighting Asian Soybean Rust
Phakopsora pachyrhizi is a biotrophic fungus provoking SBR disease. SBR poses a major threat to global soybean production. Though several R genes provided soybean immunity to certain P. pachyrhizi races, the pathogen swiftly overcame this resistance. Therefore, fungicides are the only current means to control SBR. However, insensitivity to fungicides is soaring in P. pachyrhizi and, therefore, ...
متن کاملIdentification and analyses of candidate genes for rpp4-mediated resistance to Asian soybean rust in soybean.
Asian soybean rust is a formidable threat to soybean (Glycine max) production in many areas of the world, including the United States. Only five sources of resistance have been identified (Resistance to Phakopsora pachyrhizi1 [Rpp1], Rpp2, Rpp3, Rpp4, and Rpp5). Rpp4 was previously identified in the resistant genotype PI459025B and mapped within 2 centimorgans of Satt288 on soybean chromosome 1...
متن کاملIdentification of the soybean HyPRP family and specific gene response to Asian soybean rust disease
Soybean [Glycine max (L.) Merril], one of the most important crop species in the world, is very susceptible to abiotic and biotic stress. Soybean plants have developed a variety of molecular mechanisms that help them survive stressful conditions. Hybrid proline-rich proteins (HyPRPs) constitute a family of cell-wall proteins with a variable N-terminal domain and conserved C-terminal domain that...
متن کاملOverexpression of a soybean salicylic acid methyltransferase gene confers resistance to soybean cyst nematode.
Salicylic acid plays a critical role in activating plant defence responses after pathogen attack. Salicylic acid methyltransferase (SAMT) modulates the level of salicylic acid by converting salicylic acid to methyl salicylate. Here, we report that a SAMT gene from soybean (GmSAMT1) plays a role in soybean defence against soybean cyst nematode (Heterodera glycines Ichinohe, SCN). GmSAMT1 was ide...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature Biotechnology
سال: 2016
ISSN: 1087-0156,1546-1696
DOI: 10.1038/nbt.3554